Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 933: 172881, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38701922

RESUMO

Wetlands play a disproportionate role in the global climate as major sources and sinks of greenhouse gases. Herbicides are the most heavily used agrochemicals and are frequently detected in aquatic ecosystems, with glyphosate and 2,4-Dichlorophenoxyacetic acid (2,4-D), representing the two most commonly used worldwide. In recent years, these herbicides are being used in mixtures to combat herbicide-tolerant noxious weeds. While it is well documented that herbicide use for agriculture is expected to increase, their indirect effects on wetland greenhouse gas dynamics are virtually unknown. To fill this knowledge gap, we conducted a factorial microcosm experiment using low, medium, and high concentrations of glyphosate or 2,4-D, individually and in combination to investigate their effects on wetland methane, carbon dioxide, and nitrous oxide fluxes. We predicted that mixed herbicide treatments would have a synergistic effect on greenhouse gases compared to individual herbicides. Our results showed that carbon dioxide flux rates and cumulative emissions significantly increased from both individual and mixed herbicide treatments, whereas methane and nitrous oxide dynamics were less affected. This study suggests that extensive use of glyphosate and 2,4-D may increase carbon dioxide emissions from wetlands, which could have implications for climate change.

2.
Harmful Algae ; 133: 102599, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38485445

RESUMO

Cyanobacterial blooms present substantial challenges to managers and threaten ecological and public health. Although the majority of cyanobacterial bloom research and management focuses on factors that control bloom initiation, duration, toxicity, and geographical extent, relatively little research focuses on the role of loss processes in blooms and how these processes are regulated. Here, we define a loss process in terms of population dynamics as any process that removes cells from a population, thereby decelerating or reducing the development and extent of blooms. We review abiotic (e.g., hydraulic flushing and oxidative stress/UV light) and biotic factors (e.g., allelopathic compounds, infections, grazing, and resting cells/programmed cell death) known to govern bloom loss. We found that the dominant loss processes depend on several system specific factors including cyanobacterial genera-specific traits, in situ physicochemical conditions, and the microbial, phytoplankton, and consumer community composition. We also address loss processes in the context of bloom management and discuss perspectives and challenges in predicting how a changing climate may directly and indirectly affect loss processes on blooms. A deeper understanding of bloom loss processes and their underlying mechanisms may help to mitigate the negative consequences of cyanobacterial blooms and improve current management strategies.


Assuntos
Cianobactérias , Cianobactérias/fisiologia
3.
Water Res ; 253: 121357, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38401471

RESUMO

Freshwater benthic algae form complex mat matrices that can confer ecosystem benefits but also produce harmful cyanotoxins and nuisance taste-and-odor (T&O) compounds. Despite intensive study of the response of pelagic systems to anthropogenic change, the environmental factors controlling toxin presence in benthic mats remain uncertain. Here, we present a unique dataset from a rapidly urbanizing community (Kansas City, USA) that spans environmental, toxicological, taxonomic, and genomic indicators to identify the prevalence of three cyanotoxins (microcystin, anatoxin-a, and saxitoxin) and two T&O compounds (geosmin and 2-methylisoborneol). Thereafter, we construct a random forest model informed by game theory to assess underlying drivers. Microcystin (11.9 ± 11.6 µg/m2), a liver toxin linked to animal fatalities, and geosmin (0.67 ± 0.67 µg/m2), a costly-to-treat malodorous compound, were the most abundant compounds and were present in 100 % of samples, irrespective of land use or environmental conditions. Anatoxin-a (8.1 ± 11.6 µg/m2) and saxitoxin (0.18 ± 0.39 µg/m2), while not always detected, showed a systematic tradeoff in their relative importance with season, an observation not previously reported in the literature. Our model indicates that microcystin concentrations were greatest where microcystin-producing genes were present, whereas geosmin concentrations were high in the absence of geosmin-producing genes. Together, these results suggest that benthic mats produce microcystin in situ but that geosmin production may occur ex situ with its presence in mats attributable to adsorption by organic matter. Our study broadens the awareness of benthic cyanobacteria as a source of harmful and nuisance metabolites and highlights the importance of benthic monitoring for sustaining water quality standards in rivers.


Assuntos
Microcistinas , Naftóis , Saxitoxina , Tropanos , Animais , Humanos , Paladar , Odorantes/análise , Ecossistema , Toxinas de Cianobactérias , Rios/microbiologia
4.
Water Res ; 249: 120817, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38086207

RESUMO

Water quality of eutrophic lakes is threatened by harmful cyanobacterial blooms, which are favored by summer heatwaves and expected to intensify with global warming. Societal demands on surface water for drinking, irrigation and recreation are also highest in summer, especially during dry and warm conditions. Here, we analyzed trends in online searches to investigate how public awareness of cyanobacterial blooms is impacted by temperature in nine different countries over almost twenty years. Our findings reveal large seasonal and interannual variation, with more online searches for harmful cyanobacteria in temperate regions during hot summers. Online searches and media attention increased even more steeply with temperature than the incidence of cyanobacterial blooms, presumably because lakes attract more people during warm weather. Overall, our study indicates that warmer summers not only increase cyanobacterial bloom incidence, but also lead to a pronounced increase of the public awareness of toxic cyanobacterial blooms.


Assuntos
Cianobactérias , Eutrofização , Humanos , Estações do Ano , Qualidade da Água , Lagos/microbiologia
5.
Nature ; 619(7969): 317-322, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37438590

RESUMO

Plastic debris is thought to be widespread in freshwater ecosystems globally1. However, a lack of comprehensive and comparable data makes rigorous assessment of its distribution challenging2,3. Here we present a standardized cross-national survey that assesses the abundance and type of plastic debris (>250 µm) in freshwater ecosystems. We sample surface waters of 38 lakes and reservoirs, distributed across gradients of geographical position and limnological attributes, with the aim to identify factors associated with an increased observation of plastics. We find plastic debris in all studied lakes and reservoirs, suggesting that these ecosystems play a key role in the plastic-pollution cycle. Our results indicate that two types of lakes are particularly vulnerable to plastic contamination: lakes and reservoirs in densely populated and urbanized areas and large lakes and reservoirs with elevated deposition areas, long water-retention times and high levels of anthropogenic influence. Plastic concentrations vary widely among lakes; in the most polluted, concentrations reach or even exceed those reported in the subtropical oceanic gyres, marine areas collecting large amounts of debris4. Our findings highlight the importance of including lakes and reservoirs when addressing plastic pollution, in the context of pollution management and for the continued provision of lake ecosystem services.


Assuntos
Lagos , Plásticos , Poluição da Água , Abastecimento de Água , Ecossistema , Lagos/química , Plásticos/análise , Plásticos/classificação , Poluição da Água/análise , Poluição da Água/estatística & dados numéricos , Inquéritos e Questionários , Urbanização , Atividades Humanas
6.
Water Res ; 219: 118573, 2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35643062

RESUMO

Carbon, nitrogen, and phosphorus are critical macroelements in freshwater systems. Historically, researchers and managers have focused on inorganic forms, based on the premise that the organic pool was not available for direct uptake by phytoplankton. We now know that phytoplankton can tap the organic nutrient pool through a number of mechanisms including direct uptake, enzymatic hydrolysis, mixotrophy, and through symbiotic relationships with microbial communities. In this review, we explore these mechanisms considering current and projected future anthropogenically-driven changes to freshwater systems. In particular, we focus on how naturally- and anthropogenically- derived organic nutrients can influence phytoplankton community structure. We also synthesize knowledge gaps regarding phytoplankton physiology and the potential challenges of nutrient management in an organically dynamic and anthropogenically modified world. Our review provides a basis for exploring these topics and suggests several avenues for future work on the relation between organic nutrients and eutrophication and their ecological implications in freshwater systems.


Assuntos
Eutrofização , Fitoplâncton , Água Doce , Lagos , Nitrogênio , Nutrientes , Fósforo , Fitoplâncton/fisiologia
7.
FEMS Microbiol Rev ; 46(6)2022 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-35749580

RESUMO

David Schindler and his colleagues pioneered studies in the 1970s on the role of phosphorus in stimulating cyanobacterial blooms in North American lakes. Our understanding of the nuances of phosphorus utilization by cyanobacteria has evolved since that time. We review the phosphorus utilization strategies used by cyanobacteria, such as use of organic forms, alternation between passive and active uptake, and luxury storage. While many aspects of physiological responses to phosphorus of cyanobacteria have been measured, our understanding of the critical processes that drive species diversity, adaptation and competition remains limited. We identify persistent critical knowledge gaps, particularly on the adaptation of cyanobacteria to low nutrient concentrations. We propose that traditional discipline-specific studies be adapted and expanded to encompass innovative new methodologies and take advantage of interdisciplinary opportunities among physiologists, molecular biologists, and modellers, to advance our understanding and prediction of toxic cyanobacteria, and ultimately to mitigate the occurrence of blooms.


Assuntos
Cianobactérias , Lagos , Lagos/microbiologia , Eutrofização , Cianobactérias/fisiologia , Fósforo , Nitrogênio
9.
Mol Pharm ; 15(5): 1766-1777, 2018 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-29578347

RESUMO

We describe lead compound MIDD0301 for the oral treatment of asthma based on previously developed positive allosteric α5ß3γ2 selective GABAA receptor (GABAAR) ligands. MIDD0301 relaxed airway smooth muscle at single micromolar concentrations as demonstrated with ex vivo guinea pig tracheal rings. MIDD0301 also attenuated airway hyperresponsiveness (AHR) in an ovalbumin murine model of asthma by oral administration. Reduced numbers of eosinophils and macrophages were observed in mouse bronchoalveolar lavage fluid without changing mucous metaplasia. Importantly, lung cytokine expression of IL-17A, IL-4, and TNF-α were reduced for MIDD0301-treated mice without changing antiinflammatory cytokine IL-10 levels. Automated patch clamp confirmed amplification of GABA induced current mediated by α1-3,5ß3γ2 GABAARs in the presence of MIDD0301. Pharmacodynamically, transmembrane currents of ex vivo CD4+ T cells from asthmatic mice were potentiated by MIDD0301 in the presence of GABA. The number of CD4+ T cells observed in the lung of MIDD0301-treated mice were reduced by an oral treatment of 20 mg/kg b.i.d. for 5 days. A half-life of almost 14 h was demonstrated by pharmacokinetic studies (PK) with no adverse CNS effects when treated mice were subjected to sensorimotor studies using the rotarod. PK studies also confirmed very low brain distribution. In conclusion, MIDD0301 represents a safe and improved oral asthma drug candidate that relaxes airway smooth muscle and attenuates inflammation in the lung leading to a reduction of AHR at a dosage lower than earlier reported GABAAR ligands.


Assuntos
Asma/tratamento farmacológico , Inflamação/tratamento farmacológico , Pulmão/efeitos dos fármacos , Músculo Liso/efeitos dos fármacos , Receptores de GABA-A/metabolismo , Animais , Asma/metabolismo , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Líquido da Lavagem Broncoalveolar/química , Linfócitos T CD4-Positivos/efeitos dos fármacos , Linfócitos T CD4-Positivos/metabolismo , Constrição , Citocinas/metabolismo , Eosinófilos/efeitos dos fármacos , Eosinófilos/metabolismo , Feminino , Cobaias , Inflamação/metabolismo , Ligantes , Pulmão/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Músculo Liso/metabolismo , Ovalbumina/metabolismo , Hipersensibilidade Respiratória/metabolismo
10.
Mol Pharm ; 14(6): 2088-2098, 2017 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-28440659

RESUMO

We describe pharmacokinetic and pharmacodynamic properties of two novel oral drug candidates for asthma. Phenolic α4ß3γ2 GABAAR selective compound 1 and acidic α5ß3γ2 selective GABAAR positive allosteric modulator compound 2 relaxed airway smooth muscle ex vivo and attenuated airway hyperresponsiveness (AHR) in a murine model of asthma. Importantly, compound 2 relaxed acetylcholine contracted human tracheal airway smooth muscle strips. Oral treatment of compounds 1 and 2 decreased eosinophils in bronchoalveolar lavage fluid in ovalbumin sensitized and challenged mice, thus exhibiting anti-inflammatory properties. Additionally, compound 1 reduced the number of lung CD4+ T lymphocytes and directly modulated their transmembrane currents by acting on GABAARs. Excellent pharmacokinetic properties were observed, including long plasma half-life (up to 15 h), oral availability, and extremely low brain distribution. In conclusion, we report the selective targeting of GABAARs expressed outside the brain and demonstrate reduction of AHR and airway inflammation with two novel orally available GABAAR ligands.


Assuntos
Asma/patologia , Animais , Líquido da Lavagem Broncoalveolar , Modelos Animais de Doenças , Eosinófilos/metabolismo , Citometria de Fluxo , Humanos , Pulmão , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Ovalbumina/metabolismo , Receptores de GABA/metabolismo , Hipersensibilidade Respiratória/metabolismo , Suínos
11.
Am J Physiol Regul Integr Comp Physiol ; 309(7): R788-94, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26202070

RESUMO

Transgenic mouse models are designed to study the role of specific proteins. To increase transgene expression the human growth hormone (hGH) minigene, including introns, has been included in many transgenic constructs. Until recently, it was thought that the hGH gene was not spliced, transcribed, and translated to produce functional hGH protein. We generated a transgenic mouse with the transcription factor Forkhead box M1 (FoxM1) followed by the hGH minigene, under control of the mouse insulin promoter (MIP) to target expression specifically in the pancreatic ß-cell. Expression of FoxM1 in isolated pancreatic islets in vitro stimulates ß-cell proliferation. We aimed to investigate the effect of FoxM1 on ß-cell mass in a mouse model for diabetes mellitus. However, we found inadvertent coexpression of hGH protein from a spliced, bicistronic mRNA. MIP-FoxM1-hGH mice had lower blood glucose and higher pancreatic insulin content, due to increased ß-cell proliferation. hGH signals through the murine prolactin receptor, and expression of its downstream targets tryptophan hydroxylase-1 (Tph1), tryptophan hydroxylase-2 (Tph2), and cytokine-inducible SH2 containing protein (Cish) was increased. Conversely, transcriptional targets of FoxM1 were not upregulated. Our data suggest that the phenotype of MIP-FoxM1-hGH mice is due primarily to hGH activity and that the FoxM1 protein remains largely inactive. Over the past decades, multiple transgenic mouse strains were generated that make use of the hGH minigene to increase transgene expression. Our work suggests that each will need to be carefully screened for inadvertent hGH production and critically evaluated for the use of proper controls.


Assuntos
Hormônio do Crescimento Humano/genética , Células Secretoras de Insulina/fisiologia , Transgenes/genética , Animais , Antimetabólitos , Glicemia/metabolismo , Bromodesoxiuridina , Proliferação de Células , Proteína Forkhead Box M1 , Fatores de Transcrição Forkhead/genética , Glucose/farmacologia , Transportador de Glucose Tipo 2/biossíntese , Transportador de Glucose Tipo 2/genética , Humanos , Insulina/metabolismo , Camundongos , Camundongos Transgênicos , Fenótipo , RNA Mensageiro/biossíntese , RNA Mensageiro/genética
12.
Am J Physiol Endocrinol Metab ; 305(5): E600-10, 2013 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-23860123

RESUMO

Recently, a novel type 1 diabetes association locus was identified at human chromosome 6p31.3, and transcription factor 19 (TCF19) is a likely causal gene. Little is known about Tcf19, and we now show that it plays a role in both proliferation and apoptosis in insulinoma cells. Tcf19 is expressed in mouse and human islets, with increasing mRNA expression in nondiabetic obesity. The expression of Tcf19 is correlated with ß-cell mass expansion, suggesting that it may be a transcriptional regulator of ß-cell mass. Increasing proliferation and decreasing apoptotic cell death are two strategies to increase pancreatic ß-cell mass and prevent or delay diabetes. siRNA-mediated knockdown of Tcf19 in the INS-1 insulinoma cell line, a ß-cell model, results in a decrease in proliferation and an increase in apoptosis. There was a significant reduction in the expression of numerous cell cycle genes from the late G1 phase through the M phase, and cells were arrested at the G1/S checkpoint. We also observed increased apoptosis and susceptibility to endoplasmic reticulum (ER) stress after Tcf19 knockdown. There was a reduction in expression of genes important for the maintenance of ER homeostasis (Bip, p58(IPK), Edem1, and calreticulin) and an increase in proapoptotic genes (Bim, Bid, Nix, Gadd34, and Pdia2). Therefore, Tcf19 is necessary for both proliferation and survival and is a novel regulator of these pathways.


Assuntos
Ciclo Celular/fisiologia , Diabetes Mellitus/metabolismo , Estresse do Retículo Endoplasmático/fisiologia , Células Secretoras de Insulina/metabolismo , Fatores de Transcrição/metabolismo , Animais , Ciclo Celular/genética , Linhagem Celular Tumoral , Sobrevivência Celular/fisiologia , Diabetes Mellitus/genética , Diabetes Mellitus/patologia , Humanos , Hibridização In Situ , Masculino , Camundongos , Camundongos Endogâmicos C57BL , RNA/química , RNA/genética , RNA Interferente Pequeno/farmacologia , Reação em Cadeia da Polimerase em Tempo Real , Fatores de Transcrição/biossíntese , Fatores de Transcrição/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...